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Sensing the Frictional State of a Robotic Skin
via Subtractive Color Mixing

Xi Lin and Michaël Wiertlewski Member, IEEE

Abstract—The perception of surface properties such as shape
and slipperiness is crucial to ensure that the hand-held object
is stable. Without touch, precise manipulation becomes difficult.
Some robotic tactile sensors use cameras that observe the elastic
deformation of a membrane to detect edges or slippage of the
contact. The perception of the contact state drove innovative
control strategies. However, previous methods on these lines do
not include quantitative means of measuring the 3-dimensional
deformation of the skin or suffer from a lack of spatial resolution.
Here we present a tactile sensor based on a subtractive color
mixing process designed to track the 3-dimensional displacement
of an array of markers, using the information delivered by the
color channel of off-the-shelf cameras. The distributed shear
and normal deformation can be assessed from the spectrum
of the light reflected and refracted by an array of diffusive
and transmissive markers placed on two superimposed layers.
The markers show various blends of colors, depending on the
displacement at the surface. The color pattern of each marker can
be tracked with little computation and remains robust to external
lighting. The ability to sense the 3-dimensional deformation field
can improve robotic perception of frictional properties which
have applications in the fields of robotic control and human-
robot interactions.

Index Terms—Force and Tactile Sensing; Soft Material
Robotics

I. INTRODUCTION

FOR both robots and humans, tactile perception is essential
to be able to learn and perform appropriate hand ges-

tures for grasping and manipulating objects [1]. In particular,
humans’ tactile perception of the state of contact between
a finger and an object generates information on which the
stability of the grasp depends [2]. The object might have to
be moved reliably from one place to another without inducing
any perception of relative motion with respect to the fingers.
In other scenarios, the opposite problem might arise when the
object has to be slid to a certain part of the hand in order
to be properly lifted. These chains of events involve fine and
dexterous control of the frictional contact between the object
and the skin. In humans, the state of friction is thought to be
assessed not by directly determining the normal and tangential
components of the force, but rather depending on which part
of the fingertip is stuck to the object and which part is starting
to slide [3], [4].
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The contribution of tactile sensing to grasping and manip-
ulation has been well recognized [5]. Artificial skin based
on piezo-resistive [6], piezoelectric [7], electrostatic [8], [9],
optical [10] and even ultrasonic transducers [11] have been
previously tested. These tactile sensors convert the localized
deformation of the surface into a signal that is stored and in-
terpreted by a computer. These sensors can collect information
that is not accessible visually, not only because the contact is
often hidden from view, but mostly because the information
about the contact, such as the slipperiness of the surface or the
compliance of the material, requires mechanical interactions to
be revealed.

Many of the latest methods designed for this purpose
focus on measuring the pressure field applied normal to the
surface, which suffices to recognize objects [12]. It has been
established, however, that the lateral traction produced by
friction is essential to control robotic grippers [13], [14]. A
dense array of sensors also requires a cumbersome set of
electrical interconnections and conditioning electronics when
a large number of transducers are used.

Some sensors use a camera to transduce the deformation
of an elastic body or membrane [15], [16], [17], [18]. The
usual procedure starts by locating the center of black or
white markers. The lateral motion of each marker can be
easily determined with computer-vision algorithms and the
distributed measurements are sufficiently rich to recognize the
nature and orientation of an object. However, these methods do
not directly provide the normal and lateral pressure field at the
interface. In particular, the local friction coefficient, expressed
by the ratio between the lateral shear stress and the normal
stress cannot be directly observed although this parameter is
essential for characterizing the adherence of an object and its
stability in the hand.

To address these challenges, we developed the camera-based
sensor, shown in Fig. 1a and 1b, which not only tracks the
lateral motion of an array of markers but also resolves the
motion normal to the surface. The sensor recruits a double
array of overlapping semi-transparent colored markers. The
deformation of the markers, which are attached to the interac-
tion surface, affects their shape and their color content, which
makes it possible to reconstruct the 3-dimensional deformation
field at the interface.

II. BACKGROUND ON CAMERA-BASED ROBOTIC FINGERTIP

Since cameras are ubiquitous and provide a fast, reliable
way of transferring real-time data to a controller, many arti-
ficial fingertips have included an off-the-shelf optical sensor,
thus reducing the need for the custom-made electronics re-
quired in piezoresistive or capacitive sensor arrays.
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Fig. 1. (a) Exploded view of the tactile sensor based on color mixing. Yellow
markers are rigid and magenta markers are deformable. (b) View of the sensor
assembly. (c) Diagrams illustrating the deformation of each layer under an
inclined external force. (d) Compressive and shear deformations can readily
be determined from the color pattern.

Artificial fingertips are often made by including in a soft
hemispheric membrane markers that can easily be tracked
using state-of-the-art image segmentation methods. Once the
membranes elasticity and shape have been determined, the
stress at the surface can be calculated by performing least-
squares regressions [15]. Markers can be mounted on pillars
to amplify the rotation of the membrane and improve the
sensitivity of these sensors to edges [19], [16]. In these
devices, the sensor encodes a 2-dimensional displacement field
in which the local traction and the indentation are combined.

The GelForce sensor includes two layers of spherical mark-
ers of different colors to determine the full 3-dimensional
stress field. Any stresses imposed on the surface will induce
deformations of the solid, the intensity of which depends
inversely on the depth of the markers. By performing a
linear interpolation, it is possible to determine the lateral and
normal stresses from the displacement of markers located
at different depth [20]. The efficiency of this method has
been established with an artificial finger equipped with a
5x5 grid [17]. However, as these markers are opaque, only
a few markers can be seen at the same time, which reduces
the spatial resolution of the system. In another interesting
approach is based on the apparent sharpness of the marker
when it moves out of focus [21]. The Gelsight sensor provides
a picture of the deformation field using photogrammetric
methods [18]. This sensor is composed of a thin layer of silver
flakes, which diffuse light in all directions. The relief of an
object that is touched can be reconstructed using three separate
illumination sources and a Lambertian reflectance model. This
setup gives the shape of the object with an unmatched level of
precision, and hence the relative position of a tactile feature
[22]. However, since the motion of artificial skin particles is
not tracked, the stress field at the interface cannot be easily
determined. The authors solved this problem by adding a layer
of dots giving information about slippages [23].

Our own method focuses on uniformly sampling the defor-
mation field at the surface of an elastic body. With this marker-
based method, the shear deformation is determined via the
centroid tracking of each marker, and the normal deformation,

via the blend of colors between two layers of markers acting
as a band-limited optical filter.

III. SENSOR PRINCIPLE AND MANUFACTURING

A. Design rationale

The main purpose of this tactile sensor is to assess the
spatiotemporal changes in the frictional state at the point of
contact between the skin of the finger and the object touched.
In order to ensure that the sensor collects meaningful infor-
mation, we looked at how human fingertips sense shapes and
the state of friction. This yielded the following requirements:

1) The sensor must be able to detect surface undulations
which are at least 10 times smaller than the contact area.
Without any relative motion, surface defects as small
as 1 mm in a ≈10 mm-diameter contact area can be
detected by human touch alone [24].

2) Friction plays a crucial role in the stability of our
grasp [25] and in the perception of materials [26].
Because of this, the shear and normal components of
the deformation field have to be determined.

3) The elasticity of the medium diffuses the stress through-
out the solid so the deeper the markers are located, the
more individual motion are smoothed out. To avoid this,
the markers should be located less than 0.5 mm from the
surface [27].

One of the consequences of having a large number of
markers is that each individual marker occupies only a few
pixels and changes of size and location are hardy perceivable.
Our approach overcomes this issue by making use of the color
channels of cameras. Instead of finding the normal motion
from the change in size of a pixellated monochromatic shape,
our sensor encodes the normal motion reliably via a change
of color, even when only a handful of pixels are used.

B. Color mixing from partial occlusion

The new sensor is constructed around a soft transparent
silicone body in which two separate layers of colored markers
are embedded. Markers closer to the surface of the skin are
soft and reflect magenta light (that has a spectrum containing
both blue and red wavelengths). In the implementation shown
in Fig.1a, the setup is comprised of one hundred 2mm-wide
markers placed 1mm apart. The second layer of markers
overlaying the magenta marker array consists of a material that
is transparent to light with a wavelength greater than 500 nm.
The high-pass filter gave these markers a yellow appearance
to the naked eye and to camera sensors. When pressure is
applied to the surface of the sensor, the magenta markers are
brought closer to the yellow filter, see Fig.1c. Shear forces
will shift the center of each marker relative to each another.
The combination of stretch, compression, and lateral shift
creates a colored pattern, which specifies the direction and
the magnitude of the displacement vector of the surface above
the markers Fig.1d.

Fig. 2a and 2b are typical views of the two layers, showing
the three colors magenta (which is white without any green),
yellow (which is white without any blue) and red (which is
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Fig. 2. (a) Diagram of the image of the marker observed by the camera. (b)
The white light is scattered by either the background or the magenta marker.
Some of the scattered light crosses through the yellow filter, which further
filters the color spectrum. (c) Color spectra of the light after the reflection by
the magenta markers, of the light after being transmitted trough the yellow
markers, and of the light which is both scattered by the magenta markers and
filtered by the transparent yellow filter. (d) Corresponding histograms of the
hue channel in the HSV colorspace.

white any green or blue). Marker arrays are flooded with
diffuse white light, which can be either diffused by the
magenta markers or the white layer and possibly filtered by
the yellow markers on its way back to the camera. All four
combinations of the color spectrum shown in Fig. 2b can be
seen in the resulting image. Physically, shifting from white to
red occurs when the magenta markers reflect only the red and
the blue parts of the spectrum and the blue is filtered out by
the yellow layer, as described in Fig. 2c.
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Fig. 3. Effect of the change in the size of the magenta markers on the
histogram of the hue channel. The histogram is only slightly affected by the
number of pixels in the image.

Humans and cameras alike detect only three bands in the
optical spectrum, in the blue (≈450nm), green (≈580nm) and
red (≈690nm) ranges. Images detected in the Red-Green-Blue
color space can be converted into Hue-Saturation-Value (HSV)
color space, where the value and the saturation depend only on
the illumination of the markers and the hue channel contains
the color information. An example of the hue intensity of
typical light rays is presented in Fig. 2d. The hue channel is
presented in the form of a color , where the colors are shown
at an angle with respect to an arbitrary origin, set at red. In the
HSV color space, the center of mass of the histogram of the
hue channel depends on the normal displacement of the soft
marker with respect to the transparent marker, see Fig. 3. Since
changes in the hue of the image involve a large number of
pixels carrying 24 bits of information (versus 1 bit in the case
of segmented black and white images), these fluctation will be
theoretically more visible in the case of small displacements
than the apparent change in the marker size, which translates

into greater sensitivity to the motion normal to the surface.

C. The opto-mechanical model

This section describes models for the optical and mechanical
components of the complete sensor.

1) Effects of the focal length on the resolution: The reli-
ability of the measurements depends on the camera and lens
used to detect the markers. A longer telephoto lens will reduce
the apparent changes in the marker size, and a simple model
shows that the shorter the focal length, the more pronounced
the motion of the moving marker will be.

The model illustrated in the Fig. 4a is based on the well-
known pinhole camera model, in which light rays reflected by
objects and reaching the image plane cross a point located one
focal length from the image sensor.
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Fig. 4. (a) The pinhole camera model explaining how sensor motion is
correlated to changes in apparent size. (b) The large Poisson coefficient of soft
material results in significant stretching of the soft marker, which increases
the signal to noise ratio. (c) The optimum thickness maximizing the apparent
change in the case of a given external force is presented here, depending on
the camera’s angle of view.

The problem is constrained by the fact that n markers have
to fit into the field of view θ. Each of the markers therefore has
to cover a fraction of the field of view, L0/(d+t) = tan(θ/n).
The pinhole model states that the angular size of the markers
is the same on both sides of the focal point, tan (θ/n) = l0/f .
With these constraints in mind, maximizing the sensitivity of
the sensor in the normal direction amounts to maximizing the
relative changes in the apparent size (l − l0)/l0 with a given
normal displacement of the marker δz . Let us take Thales’
intercept theorem:

l

f
=

L0

d+ t− δz
and

l0
f

=
L0

d+ t
(1)

Combining these equations leads to the relative change:

l − l0
l0

=

(
1− δz

d+ t

)−1

− 1 =
δz
d+ t

+O
(
δ2z
)

(2)

The result of this equation is shown in Fig. 5a. The smaller
the distance to the object is, the more noticeable the changes
will be. Smaller focal length optics are therefore preferred.

2) Mechanics and optimal thickness between layers: The
top layer of the assembly is soft and the magenta markers can
be stretched elastically. Stretching increases the actual size of
the marker and therefore further enhances the sensitivity, see
Fig. 4b.
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Fig. 5. (a) The soft magenta layer is pushed down towards the yellow filter.
(b) The model predicts that a wide angle lens will give greater magnification
at a given normal displacement of the marker.

A simple model for the deformation of the marker can be
drawn up, taking in consideration only the elasticity of the
material sandwiched between the two layers. In this simplified
model, which is presented in Fig. 4c, the behavior of the ma-
terial boils down to a compression ratio that can be described
by the materials Young’s modulus E, the thickness t and the
marker size L, as well as a lateral extension corresponding to
the Poisson’s ratio ν. The compressive elasticity of the material
just below the marker can be obtained by deriving Hooke’s and
Poisson’s laws:

δz =
Fz

EL2
0

t and L = L0

(
1 + ν

δz
t

)
(3)

We can see that a thicker sensor gives greater marker
mobility at a given external force, at the expense of a smaller
change in the apparent area. A thickness that maximized
the compliance while keeping a large stretch was obtained
by combining equations 1 and 3. Assuming that we have a
Young’s modulus of E = 0.4 MPa, Poisson’s ration ν = 0.5
and a marker size of L0 = 2 mm projecting an image onto a
ls = 35 mm sensor, the results obtained with three different
lenses are presented in Fig. 5b. The model argues in favor of
a soft material with a low Young’s modulus, which could be
thin and deformable.

D. Robustness to pixel density and lighting conditions

One of the main advantages of using color channels is that
the markers configuration can be sorted out using just a few
pixels. A simulation was run to verify the robustness of the
method when only a few pixels were used. A single marker
was first drawn using a vector graphics editor (Illustrator,
Adobe, San Jose, CA, USA) to depict an opaque magenta
marker underlying a yellow marker with an opacity of 50%.
The size of the magenta marker was changed to provide a
range of artificial normal displacements. Images were raster-
ized in a 512x512 image and a pyramid gaussian process was
used to create smaller versions, with the goal to emulate the
effect of having smaller markers. Once the small version was
created, an anti-aliasing filter that leverages a Gaussian filter
with standard deviation set to 1/8th of the size of the image
was added to remove artifacts.

Fig. 6a shows that even with a apparent size of 4x4 pixels,
displacements can be satisfactorily approximated by a second
order polynomial fit (R2 > 0.98). We also ran simulations on
the effects of changing the pixel density on the estimated size
of black and white markers. Fig. 6b shows the dramatic effects
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Fig. 6. (a) The hue measurements of the marker are almost insensitive to
the apparent size. The simulation showed that the mean hue shifts smoothly
towards the hue of the flexible magenta marker. (b) Effects of the apparent
size on the accuracy of the polynomial fit. (c) Effects of the non-uniform
luminosity on the displacement measurements.

of decreasing pixel density on the black and white markers,
resulting in a steady decrease in the accuracy of the polynomial
fit, which goodness of fit reach as low as R2 = 0.5 when the
apparent size is 4x4 pixels, while the hue-based method is
only slightly affected.

Lastly, in order to gauge the robustness to illumination non-
uniformity, we looked at the effect of adding a 25%-opacity
gradient overlay. Fig. 6c reports the difference value of the
hue or luminosity for the color-mixing and the black and white
method respectively, between the non-uniform and the uniform
illumination, relative to the overall range of measurement. This
metric compares both methods using a dimensionless number.
The results show that the accuracy of the color-based method
decreased by less than 1% under non-uniform illumination,
whereas the black and white markers have relative error as
high as 50%.

E. Methods & Manufacturing

Because it relies only on color and transparency, the sensor
can be constructed with inexpensive equipment and materials.
The procedure used to make the two layers is presented in
Fig. 7. First, a soft white compound (SortaClear 12 with
Pigment Ignite, Smooth-On, Macungie, PA, USA) is poured
into a 3-D printed mould (TPU95A, Ultimaker, Geldermalsen,
Netherlands) to form the outer layer of the sensor. The soft
material has a Young’s modulus of E = 0.4 Mpa and a
Poisson’s ratio of ν = 0.5. The white color serves to block
out the light from the outside, while at the same time diffusing
the white illumination. Once the outside layer has been cured,
a rigid mask is set in place and a mixture of the same soft
compound and a magenta dye is screen printed and heat-cured.
A transparent layer (SortaClear 12, Smooth-On, Macungie,
PA, USA) is cast on top of the magenta markers to fill the
holes left by the mask. The transparent layer also protects the
markers and sets the right thickness for the sensor, depending
on the intended design. All the elastomer compounds are first
degassed in a vacuum chamber before being poured into the
mold. The rigid base is constructed by bonding a transparent
yellow film (Color 410e, Luminis-Films, Peronnas, France) to
a transparent acrylic substrate. The squares are cut by laser
and the excess film is removed by hand. Lastly, the rigid and
soft layers are bonded.
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Fig. 7. The production process. (a) A white light-diffusive soft layer is placed
in a cast. (b) Once it has been cured, a rigid mask is applied, and (c), the
magenta markers are screen printed. (d) After the curing process, the mask is
removed and the remaining markers are covered with a transparent compound.
(e) The soft part is mounted on the rigid backing support.

The entire process can be performed within 3 days, in-
cluding the curing. The cost of the raw material is about 4.5
euros in the case of this specific configuration and the process
involves only commonly used manufacturing techniques.

IV. EXPERIMENTAL RESULTS

A. Experimental Apparatus

Experiments were conducted on a laboratory test bench,
a diagram of which is shown in Fig. 1c. The soft sensor
was fitted into a stack of transparent laser-cut acrylic plates
leaving only the top surface accessible for stimulation. Light
was provided by 3 LED strips (Neutral White, RS Pro, Corby,
UK) mounted on the side of the acrylic support. The light
was diffused by the white layer to minimized the presence
of any colored shadows and increased the color saturation. A
manually adjustable 3-axis translation stage moved a probe
with a swappable tip to apply normal and lateral deformation
loads to the surface of the sensor. A high-resolution camera
(A7Rii, Sony Corp., Tokyo, Japan) equipped with a zoom lens
(24-70mm FE Zeiss, Sony Corp., Tokyo, Japan) set at a focal
length of 24mm took high-resolution images of the markers
with an aperture of f/4 and a locked white balance. With this
setup, the deviation of the hue of 50 identical images was as
low as 0.3 degree.

B. Marker tracking method

The image processing was performed using Matlab (Math-
works Inc, Natick, USA). The raw images were corrected to
even out the nonuniform lighting using a morphological tophat
filter, and the contrast was then enhanced using histogram
equalization methods. The locations of the markers were
segmented and labeled using the centroid detection method
regionprops. At this stage, the location of each marker in
the image plane is determined. In order to assess the normal
motion, the image is segmented into regions of interest around
each marker. Each region of interest was transformed in the
HSV colorspace using rgb2hsv. The hue of each pixel which
level of saturation was above 50%, ensuring that white pixel
were excluded, was averaged to produce the estimation of the
mean hue.

C. Single marker calibration
The behavior of one marker was modeled from the displace-

ment data recorded when it was subjected to a 3-dimensional
localized external load. The model was then inverted to
estimate the displacement field in the case of more complex
load distribution, using the superposition principle.

In this experiment, the indenter was a 4 mm diameter
sphere, matching the resolution of the marker grid. The normal
displacement is correlated with the hue of the marker and the
lateral displacement is determined by tracking the centroid of
each marker.
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Fig. 8. Direct measurements show the linear relationship between the mean
hue degree and the normal displacement of the surface.

To determined the effect of a normal displacement, the
indenter was lowered onto the surface and an image was
taken every 50 microns step over a 3 mm displacement. The
results can be found in Fig. 8. The average hue is satisfactorily
approximated by a linear trend (R2 = 0.99).
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Fig. 9. The direct measurement confirms the linear relationship between the
position of the centroid of the magenta marker and the displacement of the
surface.

The changes in the position of the centroid of each marker
also obeyed a linear relationship with the lateral displacement,
see Fig. 9a. The lateral displacements were applied with a
step size of 0.05 mm during a total displacement of 1 mm
on the x axis. 15 series of lateral displacements were made
by varying the normal indentation depth from 1.5 mm to
3 mm in 0.1 mm steps. By calculating the movement of
the centroid of the soft marker under pressure loading, the
linear relationships between the lateral displacement and the
position of the centroid were determined for all 15 series
of lateral movements with various normal indentation depths,
as shown in Fig. 9b. Since the area of the magenta marker
is more visible when the normal displacement is large, the
relationship between the lateral displacement and the motion
of the centroid Gxy was affected by the normal displacement
applied to the surface. The value of the linear regression Gxy

was found to be linearly correlated (R2 = 0.93) with the
normal displacement of the surface, see Fig. 9c.
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The corresponding behavioral model can be summarized by
the following set of equations :

h = Gz δz + h0 and cxy = Gxy δxy = (aδz + b) δxy (4)

where Gz is the slope of the hue-normal displacement func-
tion, h is the hue value and h0 the hue of the marker at rest.
The gain Gxy between the displacement of the centroid cxy
and the displacement of the surface δxy is modeled by an affine
relationship with a slope a and an intercept b.

D. Calibration validation

Once the behavior of a single marker had been measured,
we inverted the model to make predictions based on the data
recorded. Three series of lateral displacements were applied
with normal indentation of 2, 2.5 and 3 mm. At each step,
the indenter pushed the marker along the x and y axes
simultaneously in 0.1 mm steps. The calibration process used
was specific to the camera and sensor setup.The inversion of
the model starts by finding the average before determining the
normal displacement of the surface. Once this has been done,
the appropriate scaling factor is used to determine the actual
lateral displacement as a function of the distance.{

δz = (h− h0)/Gz

δxy = cxy/(aδz + b)
(5)

Linear regression of the curves showed a good fit R2 >
0.94 under all the conditions tested. The errors between the
estimated δ̂ and actual displacements were less than 350µm,
which can be improved by using a non-linear approximation.

E. Reconstruction of the displacement field

The inverse model was then applied to the entire grid of
markers. The effects of the parallax imposed on the corner
markers were small and not compensated for. Some exam-
ples of the entire scene can be found in Fig. 10. With the
flat indenter, Fig. 10a and 10b, the maximum deformation
occurred on the edge of the shape, in line with the theory
of contact mechanics [28]. Likewise, the normal displacement
induced by the spherical indenter shown in Fig. 10c was in
line with the parabolic distribution predicted by Hertz’s contact
theory. Interestingly, the lateral deformation of the surface
was also visible because of the large Poisson’s ratio the of
elastomeric skin. This lateral radially distributed field, which
contains information about the frictional state of both objects
in contact, has been used in several robotic applications [29]
and is thought to be involved in the perception of adherence
in human tactile perception processes [2].

V. CONCLUSION AND LIMITATIONS

We introduce a new approach to measure 3-dimensional
displacement field with a color-based tactile sensor. The fastid-
ious process of encoding the normal displacement is achieved
by using the color channels, allowing to capture both the
normal and lateral displacement of an array of colored markers
based on the color pattern produced when transmitted through
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10 mm

δz

Fig. 10. Experiment with a square (a), a cylindrical (b) and hemispherical (c)
probe. The normal distribution is in line within the literature and the direction
of the deformation vector hints at the work of friction.

a reference translucent array. The sensor boast a precision that
corresponds to 2% of the original size.

The design principles and experimental results show
that this sensor is suitable for gauging the distributed 3-
dimensional motion of a surface to which complex stress
field involving friction are applied. However, suitable means
of measuring the force applied to the surface still remain to
be developed. A localized force applied at the center of the
sensor will induce a displacement which has visible effects on
every markers and deconvolution methods [7] can be used
to determine the stress and traction forces exerted at the
surface from the markers data. Besides the absence of force
measurements, one limitation of the sensor is that the center
of a marker that experiences a pure tilt will be measured with
a systematic error. Spherical markers can limit this effect.

Finding means of measuring the distributed 3-dimensional
interactions occur in the contact area between a surface and
an external object is key to determine the properties of the
material such as its compliance or shape, along with the
dynamics of the contact, especially the occurrence of any
incipient slippage. Tactile sensors have been found to be of
great benefit in the field of robotic surgery [30], soft-object
picking [31] and protheses [32].

VI. FUTURE WORK

Further investigations will focus on reconstructing the stress
field from the deformation, especially in the scenario such
as grasp adjustment after a perturbation, or measuring the
compliance of an object. The silicone-based sensor is highly
compliant, which is useful for the automatic control of grasp-
ing, human-robot interactions and teleoperation. In the case
of extremely large displacements, it can happen that the soft
markers will be visible between two transparent filters. In this
case, the single marker approach will not be appropriate. Since
the sensor consists of two regularly spaced grids of markers,
a large scale interference similar to the Moiré pattern will be
observed. Viewed from afar, the colored fringes produced by
the sensor provide information about the shape of the object
and the friction forces at work.
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